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ABSTRACT

Multiple description coding (MDC) offers an elegant approach to
data transmission over lossy packet-based networks. This paper pro-
poses an MDC decoder for Compressed Sensing (CS) based MDC.
Our decoder minimizes �0 norm of the total variation of the image
in a recursive manner, making it effective when different descrip-
tions experience different time delays in the network. The proposed
approach brings in a significant performance improvement in recon-
struction accuracy and reconstruction time.

Index Terms— Multiple description coding, compressed
sensing, �0 minimization, image coding

1. INTRODUCTION

In Multiple Description Coding (MDC) an information source is
coded into several chunks of data (descriptions) so that the source
can be recovered from a small subset of chunks with a reasonable
accuracy. This makes MDC effective for transmitting image and
video over lossy networks [1]. Many MDC methods have been pro-
posed. The simplest methods partition the original image into multi-
ple sub-images, which are coded separately giving different descrip-
tions. JPEG was extended in this way in [2]. The main drawback of
this approach is that the loss of a few bits in a block can make this
block and all the following blocks in a row undecodable. Many error
resilient approaches have been proposed [3].

Wavelet based MDC is another popular approach. A MDSQ-
based wavelet algorithm is proposed in [4] by optimally selecting
the number of diagonals and the quantization steps of the MD scaler
quantizer. Different strategies are also used to introduce an amount
of redundancy among the descriptions. However, most the strate-
gies are designed for a general information source without the abil-
ity to adapt to the specific image under consideration. This cause
insufficient redundancy and when certain packets are lost or a chan-
nel transmission fails, only partial redundancy can significantly con-
tribute to recover the corrupted contents. Nevertheless, the recent
theory of compressed sensing (CS) [5] allows to add redundancies
to an image, while its specific features emphasized [6]. However,
decoding algorithm in [6] is often slow when the successive descrip-
tions arrive at the receiver at different time instants. In this paper,
we propose a recursive algorithm called recursive �0 approxima-
tion (RecLZA). It achieves better reconstruction quality from few
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descriptions. When the descriptions arrive at the receiver at different
time instants RecLZA updates the reconstructed image using a fast
recursive approach.

2. THE MDC ENCODER

The MDC encoder is similar to the encoder proposed in [6]. Con-
sider a p× p image z. Let, x0 = vec(z), where vec(.) is the matrix
vectorization operator. Let n = p2. Construct Θ ∈ R

n×n such that
all its entries are mutually independent, and identically distributed
random variables with mean zero and variance unity. Form

Y = Θx0 (1)

Clearly, Y ∈ R
n. The measurement vector Y and matrix Θ are

divided into q ≥ 2 equal parts and indexed them from {1, · · · , q}:
Y = [ y′1 · · · y′q ]′, Θ = [ Φ′1 · · · Φ′q ]′,

so that yi = Φix0 ∈ R
s, and Φi ∈ R

s×n. It is assumed that s =
n/q is an integer. Each yi represents an individual description, and is
transmitted independently. In practice, a small subset of descriptions
is sufficient for decoder to reconstruct x0. Hence, the number of
rows of Θ can be smaller than n.

3. THE PROPOSEDMDC DECODER

It is assumed that the decoder can generate the same Θ by using the
same seed as the encoder. When all the descriptions are available, the
decoder can reconstruct x0 by collecting {yi}q

i=1 in Y , and comput-
ing x0 = Θ−1Y . However, in practice only a subset of descriptions
is available in decoder at an instant. Suppose that r(1) < q descrip-
tions are available and their indices are i(1), . . . , i(r(1)). Generate
y = [y′i(1) y′i(2) · · · y′

i(r(1))
]′ and Φ = [Φ′i(1) Φ′i(2) · · · Φ′

i(r(1))
]′

then we have1,

y = Φx (2)

where y ∈ R
m, Φ ∈ R

m×n, and m = s × r(1). Sincem < n, the
equation Φx = y has infinitely many solutions, which span an affine
set X ⊂ R

n of dimension n−m. In order to recover x0 from y, we
need to know a special property of x0 such that among all the points
in X only x0 satisfies that property. In particular, it has been shown
in [7, 8] that there exists a map g : X → Rn such that g(x) is a

1Note that A′ denotes the transpose of a matrix A.

2125978-1-4244-5654-3/09/$26.00 ©2009 IEEE ICIP 2009

Authorized licensed use limited to: University of Newcastle. Downloaded on May 07,2010 at 00:52:38 UTC from IEEE Xplore.  Restrictions apply. 



sparse vector only if x = x0. The map g is described in detail in the
next section. The sparsity property of g(x0) allows the recovery of
x0 as

x0 = arg min
x
‖g(x)‖0 subject to y = Φx, (3)

where ‖g(x)‖0 is �0 norm of g(x):

‖g(x)‖0 := lim
ε→0
{|g1(x)|ε + · · ·+ |gn(x)|ε},

which is the number of nonzero components in g(x). The similar
idea is used in CS [5]. Unfortunately, solving (3) is NP-hard, while
it gives the highest possibility of sparse recovery from smaller m.
Basis Pursuit (BP) is another popular approach for solving (3) where
the �0 norm is replaced by �1 norm [9] and it can be recast as a linear
program (LP). With high probability, LP can recover x0 from (3)
when level of sparsity2 (k) of g(x0) is less than m/2 [5]. It is used
in the decoder of [6] to solve (3). The proposed RecLZA algorithm
can efficiently solve (3) by using an �0 approximation approach. The
quality of reconstructed image is better in RecLZA compared to LP.
Moreover, in some settings, it is faster than LP.

3.1. The Total Variation Map

The fact that the gradient of an image is sparse [8] is used to define
the map g. Let zi,j denotes the pixel in the ith row and jth column
of image z. We define the horizontal and vertical gradient oparators
Dh : R

p×p → R
p×p and Dv : R

p×p → R
p×p as

[Dh(z)]i,j =
n

zi+1,j − zi,j ; i < p

0 ; i = p

o

[Dv(z)]i,j =
n

zi,j+1 − zi,j ; j < p

0 ; j = p

o

The total variation map performs better in (3). In the following it
will be convenient work with the vectorized versions vec{Dh(z)}
and vec{Dv(z)}. Clearly there exists Γh ∈ R

n×n and Γv ∈ R
n×n

such that

vec{Dh(z)} = Γhx

vec{Dv(z)} = Γvx (4)

The expressions for Γh and Γh can be derived in a straightforward
manner. Let hi and vi denote ith row of Γh and Γv , respectively.
Then we define g : R

n → R
n such that the i-th component of g(x)

is given by

[g(x)]i =
p

(hix)2 + (vix)2 =
√

x′Six (5)

where Si = h′ihi + v′ivi, i = 1, 2, . . . , n.

3.2. �0 Norm Approximation

RecLZA approximately formulate the objective function in (3) to
which gradient based method can be applied. The Gaussian func-
tions seems useful for this purpose [10]. Define

fσ(α) = exp(−0.5α2/σ2). (6)

2Only k � n elements in g(x0) are nonzero.

Clearly fσ(0) = 1. In addition, for any given α > 0 we have
limσ→0 fσ(α) = 0. Consequently, the function

Fσ(x) =
nX

i=1

fσ(gi(x)).

behaves like n− ||g(x)||0 when σ → 0. Defining (3):

x∗ = arg max
x

Fσ(x) subject to y = Φx, (7)

we see that x∗ → x0 as σ → 0. However, Fσ(x) has many local
maxima for small value of σ. Consequently, it is very difficult to
directly maximize Fσ(x) for a very small σ. Nevertheless, as σ
increases, Fσ(x) becomes smoother, and for a sufficiently large σ,
one has x∗ = Φ′(ΦΦ′)−1y [10]. Hence, the standard procedure is
to take a large σ initially and solve (7). Subsequently, σ is reduced
by some small factor and (7) is solved again. The procedure is
repeated until a convergence criterion is satisfied. Since the value
of σ changes slowly, the numerical algorithm to solve (7) is always
initialized close to the actual maximum and it has small likelihood
to get trapped in a local maxima.

3.3. Algorithm Derivation

The Lagrangian L(x, ν) associated with the problem (7) is

L(x, ν) = Fσ(x) + ν′(Φx− y), (8)

where ν ∈ R
m×1 is the vector of Lagrange multipliers. Now (7)

implies that there exists ν∗ such that (x∗, ν∗) is a stationary point of
L(x, ν), i.e,

∂L(x∗, ν∗)

∂x
=

∂Fσ(x∗)

∂x
+ Φ′ν∗ = 0. (9)

∂L(x∗, ν∗)

∂ν
= Φx∗ − y = 0.

Also using the definition of g and Fσ it can be shown that

∂Fσ(x)

∂x
= Υσ(x)x, Υσ(x) =

−1

σ2

nX
i=1

fσ(gi(x))Si. (10)

Now using (9) and (10) we have
„

Υσ(x∗) Φ′

Φ 0

« „
x∗
ν

«
=

„
0
y

«
(11)

The system of equation (11) is symmetric, and Υσ(x) is a sparse
matrix. This allows us to solve the system above using an iterative
method [11]. It also follows from (11) that

x∗ = Υ−1
σ (x∗)Φ

′
ˆ
Φ Υ−1

σ (x∗)Φ
′
˜−1

y. (12)

Equation (12) is nonlinear, and cannot be solved analytically. How-
ever one possible avenue is to use (12) in a fixed point iteration, for
which the the following Lemma is proved in [12].

Lemma 1 Let us define the map ζ : R
n → R

n such that

ζ(x) = Υ−1
σ (x)Φ′

ˆ
Φ Υ−1

σ (x)Φ′
˜−1

y. (13)

Then Φζ(x) = y. Let x ∈ R
n such that Φx = y, ζ(x) �= x, and

»
∂Fσ(x)

∂x

–
�= 0. (14)
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Table 1. RecLZA Algorithm
function (xe, σe)=RecLZA(x(0), y,Φ, σ)
1. Choose γ, ρ ∈ {0, 1}
repeat
2. Set λ = 1.
3. while Fσ(λζ(x(i)) + (1− λ)x(i)) < Fσ(x(i))

λ = γλ.
end

4. x(i+1) = λζ(x(i)) + (1− λ)x(i).
5. Calculate τ = ‖x(i+1) − x(i)‖2 and hr = h(i+1)

h(i)

6. If τ < ρσ or hr > 1 then σ = ρσ

until stopping criterion satisfied
7. Set xe = x(i+1) and σe = σ

end function

Then there exists λ satisfying 0 < λ ≤ 1 such that

Fσ {λζ(x) + (1− λ)x} > Fσ(x).
�

Lemma 1 ensures convergence of a refined version of the fixed point
iteration to a local maxima.

3.4. The Proposed Algorithm for Decoder

Based on the idea of previous section, the algorithm to solve (12) is
shown in Table 1. Assume that initially r(t) descriptions are avail-
able at decoder. Their indices are {i(1), · · · , i(r(t))}. Generate
y(t) = [y′i(1) y′i(2) · · · y′i(r(t))

]′ and Φt = [Φ′i(1) Φ′i(2) · · ·Φ′i(r(t))
]′.

The initial value of x is calculated as x(0) = Φ′t(ΦtΦ
′

t)
−1y(t). Set

y = y(t), Φ = Φt, σ = 1 and call RecLZA.
As described, the probability of reconstruction of x0 from (3)

is high when sparsity k of g(x0) is less than m/2, where m is the
size of y. For a larger m, we can assume that k < m/2. Let x is
recovered by using RecLZA. Hence, it is desired that g(x) should
have at least n−m/2 smaller elements. In particular, we calculate
a parameter h(i) after each iteration such that n−m/2 components
of g(x(i)) have absolute values less than h(i). Clearly, smaller h(i)

indicates better signal to noise ratio (SNR) of recovered signal. The
parameter hr is used to measure the change of h(i) after each step.
How fast σ will be lowered depends on hr and ρ. The parameter ρ
also determines how much σ will be lowered. We set ρ = 0.5 in
our experiments. The decreasing factor γ determines how fast we
backtrack in the line search step. It is standard practice to choose
0 < γ < 1.

After starting with x(0), y,Φ and σ, the algorithm updates x(i)

after every iteration. It also traces the values of τ and hr . If step 3
is satisfied for some τ or hr , then σ is lowered by ρ. The process is
repeated until a stopping criterion is satisfied. The stopping criterion
of RecLZA is based on h. If h does not decrease in an iteration
while σ is kept fixed, then σ is lowered by a factor ρ i.e. σ = ρσ
and RecLZA starts iteration again. However, after decreasing σ if h
can not decrease then RecLZA stops iteration and set σe = σ.

When new descriptions arrive at the decoder we must up-
date our estimate as the SNR of the reconstructed signal improves

with increase in the number of descriptions. Assume that after
starting with r(t) descriptions, the RecLZA reconstructs a signal
x(t) = xe and corresponding smallest σ is σt = σe. Now the
decoder receives additional r(t+1) descriptions and their indices are
{i(1), · · · , i(r(t+1))}. Unlike the algorithm in [6] RecLZA adopts
a recursive approach to account for the additional data, which saves
the computation time significantly. Let

y(t+1) = [y′i(1) · · · y′
i(r(t+1))]

′, Φt+1 = [Φ′i(1) · · · Φ′
i(r(t+1))]

′

Now we have an additional constraint y(t+1) = Φt+1x to sat-
isfy. This can also be solved by calling RecLZA. In fact we
can accelerate the convergence speed significantly by good ini-
tialization. Since the new solution cannot be far from xe, we
initialize RecLZA as close to xe as possible. We find w(t) in the
orthogonal complement of span{Φt} in span{[Φ′t Φ′t+1]

′} such
that ‖y(t+1) − Φt+1x

(t) − Φt+1w
(t)‖2 is minimized. Then set

x(0) = x(t) + w(t), y = [y(t)′ y(t+1)′ ]′, Φ = [Φ′t Φ′t+1]
′, σ = σt

and call RecLZA again.

4. EXPERIMENTS

Each of the following set of experiments was performed on various
images. However, for brevity, we only present the results obtained
by applying the algorithm on the “Camera Man” image [7]. In case
of RecLZA and Linear Programming (LP)3 the matrix Θ was gen-
erated by n× n randomly select entries from a mean-zero Gaussian
distribution. For RecLZA, the value of ρ and γ are fixed to 0.5. For
DCT, the descriptions are generated by randomly sampling the coef-
ficient in frequency domain. For faster computation, the entire image
(256×256) is divided into blocks sized 32×32. In the encoder, Y is
divided into q = 20 equal descriptions. In this simulation, we do not
consider transmission error i.e. all packets are transmitted properly
without any bit loss. Our simulations are performed in MATLAB7
environment using an Intel Core 2 Duo, 2.66 GHz processor with
2GB of memory.

Figure 1 gives PSNR plots for different algorithms. The recon-
struction starts with 4 descriptions, and subsequently, one descrip-
tion is added at a time. We also compare performance of RecLZA
when no recursion is used in it. In case of RecLZA without recur-
sion and LP, each time when a new description arrives, we add it with
previous descriptions and construct y and Φ. Initialize x(0) as mini-
mum 2-norm solution of Φx = y. Note that for RecLZA the PSNR
is higher, which also improves at a faster rate as more descriptions
are added.

Figure 2 illustrate the efficiency of proposed recursive RecLZA
in terms of required iterations and computation time. Note that recur-
sive RecLZA has remarkable performance improvement compared
to other two. For example, initially when 4 descriptions are used,
both recursive RecLZA and RecLZA without recursion require 4 it-
erations and same time. However, when another 3 descriptions are
added, i.e. descriptions= 7, recursive RecLZA requires only 3 iter-
ations compared to 10 of RecLZA without recursion to achieve sim-
ilar PSNR. Again, in terms of required computation time, LP shows
the worst performance (average 30 sec) whereas recursive RecLZA
requires only 3 seconds (average). Another similar result is shown
in Figure 3 when two descriptions are added at a time.

3http://www.acm.caltech.edu/l1magic/
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Fig. 1. PSNR versus number of descriptions for “Camera
Man” image (256× 256). One description is added at a time.

5. CONCLUSION

The paper presents a CS based fast MDC decoder. The decoder min-
imizes �0 norm of the total variation of the image in a recursive man-
ner. The computational cost around equation (12) can be minimized
efficiently by computing the inversion in function level e.g., by us-
ing DCT or FFT. In addition, our algorithm requires only a small
number of iterations to converge, making it ideal to implement on
accelerated hardware platform like FPGAs.
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